JVM面试篇


1.内存模型以及分区,需要详细到每个区放什么.

JVM 分为堆区和栈区,还有方法区,初始化的对象放在堆里面,引用放在栈里面,

class 类信息常量池(static 常量和 static 变量)等放在方法区 .

  • 方法区:主要是存储类信息,常量池(static 常量和 static 变量),编译后的代码(字 节码)等数据

  • 堆:初始化的对象,成员变量 (那种非 static 的变量),所有的对象实例和数组都要 在堆上分配

  • 栈:栈的结构是栈帧组成的,调用一个方法就压入一帧,帧上面存储局部变量表,操作数栈,方法出口等信息,局部变量表存放的是 8 大基础类型加上一个应用类型,所以还是一个指向地址的指针

  • 本地方法栈:主要为 Native 方法服务

  • 程序计数器:记录当前线程执行的行号

2.堆里面的分区:Eden,survival (from+ to),老年代,各自的特点。

堆里面分为新生代和老生代(java8 取消了永久代,采用了 Metaspace(元空间))

  • 新生代包 含 Eden+Survivor 区,survivor 区里面分为 from 和 to 区,内存回收时,如果用的是复制算法,从 from 复制到 to,当经过一次或者多次 GC 之后,存活下来的对象会被移动到老年区,当 JVM 内存不够用的时候,会触发 Full GC,清理 JVM 老年区 。
  • 当新生区满了之后会触发 YGC,先把存活的对象放到其中一个 Survice 区,然后进行垃圾清理。因为如果仅仅清理需要删除的对象,这样会导致内存碎 片,因此一般会把 Eden 进行完全的清理,然后整理内存。
  • 那么下次 GC 的时候, 就会使用下一个 Survive,这样循环使用。如果有特别大的对象,新生代放不下, 就会使用老年代的担保,直接放到老年代里面。因为 JVM 认为,一般大对象的存 活时间一般比较久远。

3.GC 的三种收集方法:标记清除、标记整理、复制算法的原理与特点,分别用在什么地方,如果让你优化收集方法,有什么思路?

  • 标记清除先标记,标记完毕之后再清除,效率不高,会产生碎片
  • 复制算法:分为 8:1 的 Eden 区和 survivor 区,就是上面谈到的 YGC
  • 标记整理:标记完毕之后,让所有存活的对象向一端移动

4.GC 收集器有哪些?CMS 收集器与 G1 收集器的特点。

  • 并行收集器:串行收集器使用一个单独的线程进行收集,GC 时服务有停顿时间

  • 串行收集器:次要回收中使用多线程来执行

  • CMS 收集器是基于“标记清除”算法实现的,经过多次标记才会被清除

  • G1 从整体来看是基于标记整理”算法实现的收集器,从局部(两个 Region 之间) 上来看是基于复制”算法实现的

5.Minor GC 与 Full GC 分别在什么时候发生?

新生代内存不够用时候发生 MGC 也叫 YGC,JVM 内存不够的时候发生 FGC

6.几种常用的内存调试工具

常用的内存调试工具:jmap、jstack、jconsole、jhat

  • jmap (Memory Map for Java) :生成堆转储快照;

  • jhat (JVM Heap Dump Browser ) : 用于分析 heapdump 文件,它会建立一个 HTTP/HTML 服务器,让用户
    可以在浏览器上查看分析结果;

  • *jstack (Stack Trace for Java):*生成虚拟机当前时刻的线程快照,线程快照就是当前虚拟机内每一条线程正在执行的方法堆栈的集合

7.类加载的几个过程:

加载、验证、准备、解析、初始化。然后是使用和卸载。

通过全限定名来加载生成 class 对象到内存中,然后进行验证这个 class 文件,包括文件格式校验、元数据验证,字节码校验等。准备是对这个对象分配内存。解析是将符号引用转化为直接引用(指针引用),初始化就是开始执行构造器的代码。

8.JVM 内存分哪几个区,每个区的作用是什么?

方法区(共享)

  • 有时候也成为永久代,在该区内很少发生垃圾回收,但是并不代表不发生 GC,在这里 进行的 GC 主要是对方法区里的常量池和对类型的卸载

  • 方法区主要用来存储已被虚拟机加载的类的信息、常量、静态变量和即时编译器编译后 的代码等数据。

  • 该区域是被线程共享的。

  • 方法区里有一个运行时常量池,用于存放静态编译产生的字面量和符号引用。该常量池 具有动态性,也就是说常量并不一定是编译时确定,运行时生成的常量也会存在这个常量 池中。

堆 (共享)

  • java 堆是所有线程所共享的一块内存,在虚拟机启动时创建,几乎所有的对象实例都在这 里创建,因此该区域经常发生垃圾回收操作。

虚拟机栈(私有)

  • 虚拟机栈也就是我们平常所称的栈内存,它为 java 方法服务,每个方法在执行的时候都会创建一个栈帧,用于存储局部变量表、操作数栈、动态链接和方法出口等信息。

  • 虚拟机栈是线程私有的,它的生命周期与线程相同。

  • 局部变量表里存储的是基本数据类型、returnAddress 类型(指向一条字节码指令的地 址)和对象引用,这个对象引用有可能是指向对象起始地址的一个指针,也有可能是代表 对象的句柄或者与对象相关联的位置。局部变量所需的内存空间在编译器间确定

  • 操作数栈的作用主要用来存储运算结果以及运算的操作数,它不同于局部变量表通过索 引来访问,而是压栈和出栈的方式

  • 每个栈帧都包含一个指向运行时常量池中该栈帧所属方法的引用,持有这个引用是为了 支持方法调用过程中的动态连接.动态链接就是将常量池中的符号引用在运行期转化为直接 引用。

本地方法栈 (私有)

  • 本地方法栈和虚拟机栈类似,只不过本地方法栈为 Native 方法服务。

程序计数器 (私有)

  • 内存空间小,字节码解释器工作时通过改变这个计数值可以选取下一条需要执行的字节码 指令,分支、循环、跳转、异常处理和线程恢复等功能都需要依赖这个计数器完成。该内 存区域是唯一一个 java 虚拟机规范没有规定任何 OOM 情况的区域。

9.如何判断一个对象是否存活?

1.引用计数法

  • 所谓引用计数法就是给每一个对象设置一个引用计数器,每当有一个地方引用这个对象 时,就将计数器加一,引用失效时,计数器就减一。当一个对象的引用计数器为零时,说明此对象没有被引用,也就是“死对象”,将会被垃圾回收.

  • 引用计数法有一个缺陷就是无法解决循环引用问题,也就是说当对象 A 引用对象 B,对象 B 又引用者对象 A,那么此时 A,B 对象的引用计数器都不为零,也就造成无法完成垃圾回 收,所以主流的虚拟机都没有采用这种算法。

2.可达性算法(引用链法)

该算法的思想是:从一个被称为 GC Roots 的对象开始向下搜索,如果一个对象到 GC Roots 没有任何引用链相连时,则说明此对象不可用。

在 java 中可以作为 GC Roots 的对象有以下几种:

  • 虚拟机栈中引用的对象

  • 方法区类静态属性引用的对象

  • 方法区常量池引用的对象

  • 本地方法栈 JNI 引用的对象

虽然这些算法可以判定一个对象是否能被回收,但是当满足上述条件时,一个对象比不一 定会被回收。当一个对象不可达 GC Root 时,这个对象并 不会立马被回收,而是出于一个死缓的阶段,若要被真正的回收需要经历两次标记如果对象在可达性分析中没有与 GC Root 的引用链,那么此时就会被第一次标记并且进行 一次筛选,筛选的条件是是否有必要执行finalize()方法。当对象没有覆盖 finalize()方法或者已被虚拟机调用过,那么就认为是没必要的。

如果该对象有必要执行 finalize()方法,那么这个对象将会放在一个称为 F-Queue 的对队 列中,虚拟机会触发一个 finalize()线程去执行,此线程是低优先级的,并且虚拟机不会承 诺一直等待它运行完,这是因为如果 finalize()执行缓慢或者发生了死锁,那么就会造成 F-Queue 队列一直等待,造成了内存回收系统的崩溃。GC对处于 F-Queue 中的对象进行 第二次被标记,这时,该对象将被移除”即将回收”集合,等待回收。

10.简述 java 垃圾回收机制?

在 java 中,程序员是不需要显示的去释放一个对象的内存的,而是由虚拟机自行执行。在 JVM 中,有一个垃圾回收线程,它是低优先级的,在正常情况下是不会执行的,只有在虚拟机空闲或者当前堆内存不足时,才会触发执行,扫除那些没有被任何引用的对象,并将它们添加到要回收的集合中,进行回收。

11.java 中垃圾收集的方法有哪些?

1.标记-清除:

标记那些要被回收的对象,然后统一回收。

有两个主要问题:

  • 效率不高,标记和清除的效率都很低;
  • 会产生大量不连续的内存碎片,导致以后程序在 分配较大的对象时,由于没有充足的连续内存而提前触发一次 GC 动作。

2.复制算法:

为了解决效率问题,复制算法将可用内存按容量划分为相等的两部分,然后每次只使用其中的一块,当一块内存用完时,就将还存活的对象复制到第二块内存上,然 后一次性清楚完第一块内存,再将第二块上的对象复制到第一块。但是这种方式,内存的代价太高,每次基本上都要浪费一半的内存。

于是将该算法进行了改进,内存区域不再是按照 1:1 去划分,而是将内存划分为 8:1:1 三部分,较大那份内存交 Eden 区,其余是两块较小的内存区叫 Survior 区。 每次都会优先使用 Eden 区,若 Eden 区满,就将对象复制到第二块内存区上,然 后清除 Eden 区,如果此时存活的对象太多,以至于 Survivor 不够时,会将这些对 象通过分配担保机制复制到老年代中。

3.标记-整理

该算法主要是为了解决标记-清除,产生大量内存碎片的问题;当对象存活率较高 时,也解决了复制算法的效率问题。它的不同之处就是在清除对象的时候现将可回 收对象移动到一端,然后清除掉端边界以外的对象,这样就不会产生内存碎片了。

4.分代收集

现在的虚拟机垃圾收集大多采用这种方式,它根据对象的生存周期,将堆分为新生代和老年代。在新生代中,由于对象生存期短,每次回收都会有大量对象死去,那 么这时就采用复制算法。老年代里的对象存活率较高,没有额外的空间进行分配担 保,所以可以使用标记-整理 或者 标记-清除。

12.java 类加载过程?

java 类加载需要7 个过程: 一个类型从被加载到虚拟机内存中开始,到卸载出内存为止,它的整个生命周期将会经历加载(Loading)、验证(Verifification)、准备(Preparation)、解析(Resolution)、初始化(Initialization)、使用(Using)和卸载(Unloading)七个阶段,其中验证、准备、解析三个部分统称为连接(Linking)。
image-20230217204010721

1.加载

加载是类加载的第一个过程,在这个阶段,将完成一下三件事情:

  • 通过一个类的全限定名获取该类的二进制流。

  • 将该二进制流中的静态存储结构转化为方法去运行时数据结构。

  • 在内存中生成该类的 Class 对象,作为该类的数据访问入口。

2.验证

验证的目的是为了确保 Class 文件的字节流中的信息不会危害到虚拟机,在该阶段主要完成以下四种验证:

  • 文件格式验证:验证字节流是否符合 Class 文件的规范,如主次版本号是否在当前虚拟 机范围内,常量池中的常量是否有不被支持的类型.

  • 元数据验证:对字节码描述的信息进行语义分析,如这个类是否有父类,是否集成了不 被继承的类等。

  • 字节码验证:是整个验证过程中最复杂的一个阶段,通过验证数据流和控制流的分析, 确定程序语义是否正确,主要针对方法体的验证。如:方法中的类型转换是否正确,跳转 指令是否正确等。

  • 符号引用验证:这个动作在后面的解析过程中发生,主要是为了确保解析动作能正确执 行。

3.准备

准备阶段是为类的静态变量分配内存并将其初始化为默认值,这些内存都将在方法区中进 行分配。准备阶段不分配类中的实例变量的内存,实例变量将会在对象实例化时随着对象 一起分配在 Java 堆中。

4.解析

该阶段主要完成符号引用到直接引用的转换动作。解析动作并不一定在初始化动作完成之 前,也有可能在初始化之后。

5.初始化

初始化时类加载的最后一步,前面的类加载过程,除了在加载阶段用户应用程序可以通过 自定义类加载器参与之外,其余动作完全由虚拟机主导和控制。到了初始化阶段,才真正 开始执行类中定义的 Java 程序代码。

6.使用

7.卸载

13.简述 java 类加载机制?

虚拟机把描述类的数据从 Class 文件加载到内存,并对数据进行校验,解析和初始化,最终形成可以被虚拟机直接使用的 java 类型。

14.类加载器双亲委派模型机制?

当一个类收到了类加载请求时,不会自己先去加载这个类,而是将其委派给父类,由父类去加载,如果此时父类不能加载,反馈给子类,由子类去完成类的加载。

15.什么是类加载器,类加载器有哪些?

实现通过类的权限定名获取该类的二进制字节流的代码块叫做类加载器。

主要有一下四种类加载器:

  1. 启动类加载器(Bootstrap ClassLoader)用来加载 java 核心类库,无法被 java 程序直接 引用。

  2. 扩展类加载器(extensions class loader):它用来加载 Java 的扩展库。Java 虚拟机的 实现会提供一个扩展库目录。该类加载器在此目录里面查找并加载 Java 类。

  3. 系统类加载器(system class loader):它根据 Java 应用的类路径(CLASSPATH) 来加载 Java 类。一般来说,Java 应用的类都是由它来完成加载的。可以通过 ClassLoader.getSystemClassLoader()来获取它。

  4. 用户自定义类加载器,通过继承 java.lang.ClassLoader 类的方式实现。

16.简述 java 内存分配与回收策率以及 Minor GC 和 Major GC

  • 对象优先在堆的 Eden 区分配。

  • 大对象直接进入老年代.

  • 长期存活的对象将直接进入老年代. 当 Eden 区没有足够的空间进行分配时,虚拟机会执行一次 Minor GC/Minor GC通 常发生在新生代的 Eden 区,在这个区的对象生存期短,往往发生 GC 的频率较高, 回收速度比较快;Full Gc/Major GC 发生在老年代,一般情况下,触发老年代 GC 的时候不会触发 Minor GC,但是通过配置,可以在 Full GC 之前进行一次 Minor GC 这样可以加快老年代的回收速度。

17.垃圾回收的优点和原理。并考虑 2 种回收机制。

优点:

  • Java 语言中一个显著的特点就是引入了垃圾回收机制,使 C++ 程序员最头疼的内存管理的问题迎刃而解,它使得 Java 程序员在 编写程序的时候不再需要考虑内存管理。由于有个垃圾回收机制, Java 中的对象不再有“作用域”的概念,只有对象的引用才有” 作用域”。垃圾回收可以有效的防止内存泄露,有效的使用可以使 用的内存。

原理:

  • 垃圾回收器通常是作为一个单独的低级别的线程运行, 不可预知的情况下对内存堆中已经死亡的或者长时间没有使用的对象进行清除和回收,程序员不能实时的调用垃圾回收器对某个对象或所有对象进行垃圾回收。

回收机制有分代复制垃圾回收和标记垃圾回收,增量垃圾回收。

18.垃圾回收器的基本原理是什么?垃圾回收器可以马上回收内存吗? 有什么办法主动通知虚拟机进行垃圾回收?

对于 GC 来说,当程序员创建对象时,GC 就开始监控这个对象 的地址、大小以及使用情况。通常,GC 采用有向图的方式记录和 管理堆(heap)中的所有对象。通过这种方式确定哪些对象是” 可达的”,哪些对象是”不可达的”。当 GC 确定一些对象为“不可达”时,GC 就有责任回收这些内存空间。

垃圾回收器可以马上回收内存:

程序员可以手动执行 System.gc(),通知 GC 运行,但是 Java 语言规范并不保证 GC 一定会执行。

19.Java 中会存在内存泄漏吗,请简单描述。

  • 所谓内存泄露就是指一个不再被程序使用的对象或变量一直被占据在内存中。

  • Java 中有垃圾回收机制,它可以保证一对象不再被引用的时候,对象将自动被垃圾回收器从内存中清除掉。由于 Java 使用有向图的方式进行垃圾回收管理, 可以消除引用循环的问题,例如有两个对象,相互引用,只要它们和根进程不可达的,那么 GC 也是可以回收它们的,

Java中的内存泄露的情况:

长生命周期的对象持有短生命周期对象的引用就很可能发生内存泄露,尽管短生命周期对象已经不再需要,但是因为长生命周期对象持有它的引用而导致不能被回收,这就是 Java中内存泄露的发生场景,通俗地说,就是程序员可能创建了一个对象,以后一直不再使用这个对象,这个对象却一直被引用,即这个对象无用但是却无法被垃圾回收器回收的,这就是 java 中可能出现内存泄露的情况。

检查 Java 中的内存泄露

一定要让程序将各种分支情况都完整执行到程序结束,然后看某个对象是否被使用过,如果没有,则才能判定这个对象属于内存泄露。如果一个外部类的实例对象的方法返回了一个内部类的实例对象, 这个内部类对象被长期引用了,即使那个外部类实例对象不再被使 用,但由于内部类持久外部类的实例对象,这个外部类对象将不会 被垃圾回收,这也会造成内存泄露。

20.深拷贝和浅拷贝。

简单来讲就是复制、克隆。

Person p=new Person(“张三”);

浅拷贝:

对对象中的数据成员进行简单赋值,如果存在动态成员 或者指针就会报错。

深拷贝:

对对象中存在的动态成员或指针重新开辟内存空间。

21.System.gc() 和 Runtime.gc() 会做什么事情?

这两个方法用来提示 JVM 要进行垃圾回收。但是,立即开始还是延迟进行垃圾回收是取决于 JVM 的。

22.finalize() 方法什么时候被调用?析构函数 (finalization) 的 目的是什么?

垃圾回收器(garbage colector)决定回收某对象时,就会运行该对象的 finalize() 方法 但是在 Java 中很不幸,如果内存总是充 足的,那么垃圾回收可能永远不会进行,也就是说filalize() 可能永远不被执行,显然指望它做收尾工作是靠不住的。 那么finalize() 究竟是做什么的呢? 它最主要的用途是回收特殊渠道申请的内存。Java 程序有垃圾回收器,所以一般情况下内存问题 不用程序员操心。但有一种 JNI(Java Native Interface)调用 non-Java 程序(C 或 C++), finalize() 的工作就是回收这部 分的内存。

23.如果对象的引用被置为 null,垃圾收集器是否会立即释放对象占用的内存?

不会,在下一个垃圾回收周期中,这个对象将是可被回收的。

24.在 Java 中,对象什么时候可以被垃圾回收?

当对象对当前使用这个对象的应用程序变得不可触及的时候,这个对象就可以被回收了。


  目录